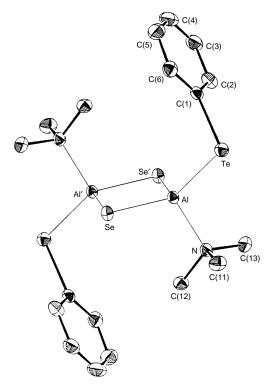
Approaching a cluster of aluminium(III) selenide: [Al₄Se₅(H)₂(NMe₃)₄]

Peter D. Godfrey,^a Colin L. Raston,*a Brian W. Skelton,^b Vicki-Anne Tolhurst^a and Allan H. White^b

^a Department of Chemistry, Monash University, Clayton, Melbourne, Victoria 3168, Australia

The reaction of trans-[{Me₃N(H)Al(μ -Se)}₂] with N,N,N',N'',N''-pentamethyldiethylenetriamine (pmdeta) in toluene affords the tetranuclear, alane selenide cluster [Al₄Se₅(H)₂(NMe₃)₄] (structurally authenticated and *ab initio* modelled), and with PhTeTePh yields a mixed chalcogenide trans-[{Me₃N(PhTe)Al(μ -Se)}₂].

In developing the chemistry of the adducts we report reactions of trans-[{Me₃N(H)Al(μ -Se)}₂] **1a** with (i) N,N,N',N'',N'''-pentamethyldiethylenetriamine (pmdeta) and (ii) PhTeTePh. Reaction (i) was an attempt to gain access to a stabilised Lewis-base-saturated monomeric H–Al=Se complex by chelation of the metal centre. This was deemed a synthetic target on theoretical grounds. Rather, an unprecedented tetranuclear cluster formed, [Al₄Se₅(H)₂(NMe₃)₄] **2**, which approaches a stabilised cluster of aluminium(III) selenide. Reaction (ii) was successful in forming a mixed chalocogenide aluminium(III) species **3**, arising from metal hydride cleavage of the diorganoditelluride. This is related to the recently established facile cleavage of diorganoditellurides and diorganodiselenides by [H₃AlNMe₃] affording [(Me₃N)Al(ER)₃], (E = Se, Te, R = alkyl, aryl).


Compounds 2 and 3 were prepared in toluene, Scheme $1.\dagger$ While compound 2 is isolated in low yield, and crystallises over several weeks, its formation is reproducible. On mixing 1a and pmdeta, a flocculant, insoluble, white precipitate was formed which is difficult to characterise: this product may be the ionic species $[\{(pmdeta)AlH_2\}^+]_2Se^2$, and its formation would account for the change in Al:hydride:Se ratio from 1:1:1 in 1a to 2:1:2.5 in 2. It shows an IR band at 1789 cm $^{-1}$ cf. 1822

cm⁻¹ for [(pmdeta)AlH₂]+AlH₄⁻, a compound which has been structurally authenticated.⁵ While the hydrides in **1** are resistant to further reaction with selenium or tellurium, reaction with a diorganoditelluride takes place, as demonstrated for **1a**, with elimination of hydrogen. Interestingly the integrity of the *trans*-isomer is maintained, whereas in the more complicated tetranuclear cluster this is lost with respect to the two residual hydrogens which are now in a *cis*-arrangement.

Assignment of structure of the two compounds rests on X-ray diffraction studies.‡ Compound 2 crystallises as a toluene solvate with a single toluene and molecule of 2 as the asymmetric unit. The Al_4Se_5 metal core can be described as two six-membered rings, both in a boat conformation, sharing an Al_2Se plane and the molecule approximates to C_2 symmetry, with cis-hydrido groups, Fig. 1. Indeed, departure from a higher potential C_{2v} symmetry relates to puckering of the boat conformation of the two six-membered rings and angular distortion in Al_3Se_4 ring with angles subtended by Se(2,4) by two metal centres being more open at 98.6° (mean) relative to

Fig. 1 Projection of [Al $_4$ Se $_5$ (H) $_2$ (NMe $_3$) $_4$]. 2 Selected distances (Å) and angles (°): Se(0)–Al(1,3) 2.361(4), 2.354(4), Se(1)–Al(1,2) 2.345(3), 2.358(4), Se(2)–Al(2,3) 2.356(4), 2.334(4), Se(3)–Al(3,4) 2.345(3), 2.360(5), Se(4)–Al(1,4) 2.332(4), 2.355(3), Al(1,2,3,4)–N(1,2,3,4) 2.05(1), 2.00(1), 2.05(1), 1.98(1); Al(1)–Se(0)–Al(3) 94.6(1), Al(1)–Se(1)–Al(2) 92.2(1), Al(2)-Se(2)-Al(3) 98.7(1), Al(3)-Se(3)-Al(4) 91.5(1), Al(1)-Se(4)-Al(4) 98.5(1), Se(0)-Al(1)-Se(1,4), N(1) 115.7(2), 113.2(1), 103.2(3), Se(1)-Al(1)-Se(4), N(1) 115.6(2), 102.2(3), Se(4)-Al(1)-N(1) 104.7(3), Se(1)-Al(2)-Se(2), N(2) 115.7(2), 101.8(4), Se(2)-Al(2)-N(2) 101.0(3), Se(0)-Al(3)-Se(2,3), N(3) 114.6(1), 114.5(2), 103.9(4), Se(2)-Al(3)–Se(3), N(3) 113.9(2), 104.7(3), Se(3)–Al(3)–N(3) 103.3(3), Se(3)– Al(4)-Se(4), N(4) 116.5(2), 104.2(4), Se(4)-Al(4)-N(4) 100.0(3). Computed values for the same molecule with C_{2v} symmetry: Al(1)–N(1) 2.059, Al(2)-N(2) 2.086, Al(1)-Se(1,4) 2.431, Al(2)-Se(1,2) 2.445, Al(2)-H 1.600, Al(1)-Se(0) 2.437, Se(0)-Al(1)-N(1), Se(1,4) 103.49, 114.44, Se(1)-Al(1)-N(1), Se(4) 103.18, 115.78, N(1)-Al(1)-Se(4) 103.16, Se(1)-Al(2)-Se(2), N(2), H 119.33, 101.57, 115.27, Se(2)-Al(2)-N(2), H, 101.57, N(2)-Al(2)-H 98.90, Al(1)-Se(0)-Al(3) 99.75, Al(1)-Se(1)-Al(2) 111.99, Al(1)-Se(4)-Al(4) 111.99.

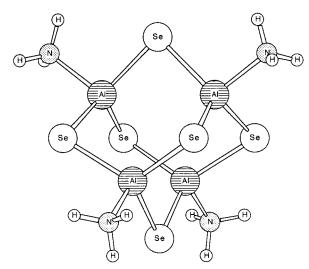

^b Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia

Fig. 2 Projection of trans-[{Me₃N(PhTe)Al(μ -Se)}₂] **3**. Selected distances (Å) and angles (°): Te–Al, 2.610(2), Se–Al 2.359(2), Se–Al' 2.347(2), Al–N 1.998(5); Al–Te–C(1), Al' 94.6(1), 76.37(6), Te–Al–Se, N, Se' 117.16(7), 102.1(1), 117.31(7), Se–Al–N, Se' 107.2(2), 103.63(6), N–Al–Se' 108.9(2)

those subtended by Se(1,3), 91.9° (mean). The corresponding angle at the unique selenium, Se(0), is intermediate at 94.6(1)°. All aluminium centres are four-coordinate. The bond distances around Al(1,3) which have the coordinated Lewis base NMe₃ are similar to those in [(Me₃N)Al(SeEt)₃], but the angles subtended by two seleniums are slightly more open at ca. 114.50, cf. 111.5(5), as are the Se–Al–N angles at ca. 113.4, cf. 87(1)°.4 Similarly the bond distances around Al(2,4) are similar to those in trans-[{Me₃N(H)Al(μ -Se)}₂] (and 3, see below) with the Se–Al–Se angles more open, at ca. 116.0°, cf. 103.10(7)°, as expected for a larger ring system. Molecules of 3 are centrosymmetric, as the trans-isomer, Fig. 2. The Al₂Se₂ core is very similar to that in trans-[{Me₃N(H)Al(μ -Se)}₂]. The Te–Al distance at 2.610(2) Å is similar to that in [(Me₃N)Al(TePh)₃], 2.589(2) Å.

An ab initio molecular-orbital calculation involving C_{2y} structure optimisation at the RHF/LanL2DZ level was undertaken on 2 giving reasonable correlation of structural parameters with experimental values, except for the angular distortions associated with C_2 rather than C_{2v} symmetry (Fig. 1).6 Constraining the symmetry to C_{2v} was necessary for computational convenience. In order to estimate the energy change on production via hydrogenation, a similar calculation was performed under C_{2v} symmetry at the MP2/LanL2DZ level on the simpler analogous compound [Al₄Se₅(H)₂(NH₃)₄] and its hypothetical precursor [Al₄Se₆(NH₃)₄], the latter under T_d symmetry as shown in Fig. 3. The MP2/LanL2DZ energies (in $E_{\rm h}$) of the reactants [Al₄Se₆(NH₃)₄] (-287.918 974 1) and H₂ (-1.143 905 1) in combination with those of the products $[Al_4Se_5(H)_2(NH_3)_4]$ (-279.9066039)and H₂Se -10.1980840) indicate that the formation of [Al₄Se₅-(H)₂(NH₃)₄] via hydrogenation is exothermic by 654 kcal mol^{-1} (1 cal = 4.184 J). Thus the analogous reverse reaction of converting 2 to [Al₄Se₆(NMe₃)₄] on treatment with H₂Se is energetically unfavourable. However other sources of selenium, for example Se(SiMe₃)₂, may favour formation of [Al₄-Se₆(NMe₃)₄], an area we are currently exploring.

Fig. 3 Computed structure of [Al₄(μ -Se)₆(Me₃N)₄] with T_d symmetry: Al-Se, N, 2.460, 2.059 Å; Se–Al–Se 116.16, Se–Al–N 101.46, Al–Se–Al 93.45°

We thank the Australian Research Council for support of this work.

Footnotes and References

- * E-mail: c.raston@sci.monash.edu.au
- † Synthesis: 2: pmdeta (0.28 ml, 1.34 mmol) was added to a stirred solution of trans-[{Me₃N(H)Al(μ -Se)}₂] (0.44 g, 1.32 mmol) in toluene at room temp. A white precipitate formed immediately and after 2 h the reaction mixture was filtered. Recrystallisation from toluene (ca. 40 ml) afforded colourless crystals (0.15 g, 20%). Mp (in vacuo); partial sublimation at 78–81 °C leaving a white powder which decomposes > 310 °C; IR v_{Al-H} 1779 cm⁻¹ (s). NMR: ¹H (300 MHz, C₆D₆, 25 °C) δ 2.10, 2.09 (NCH₃), ¹³C (75.5 MHz, C₆D₆, 25 °C) δ 47.6, 47.5 (NCH₃). Anal. Found C, 23.11; H, 5.06; N, 6.58. Calc. for C₁₂H₃₈Al₄N₄Se₅·0.5C₇H₈: C, 23.65; H, 5.38; N, 7.12%.
- 3: PhTeTePh (0.65 g, 1.6 mmol) in toluene (10 ml) was added to *trans*-[{Me₃N(H)Al(μ -Se)}₂] (0.53 g, 1.6 mmol) in toluene (20 ml) at room temp. with gas evolution. After 17 h the resulting orange solution was filtered, and volatiles removed *in vacuo*. Recrystallisation from toluene (*ca.* 15 ml) afforded orange crystals (0.48 g, 41%). Mp 145–147 °C (*in vacuo*). NMR: ¹H (200 MHz, C₆D₆, 25 °C) δ 8.17 (6 H, m, o-C₆H₅), 6.91 (4 H, m, m-, p-C₆H₅), 2.10 (18 H, s, NCH₃); ¹³C (50.3 MHz, C₆D₆, 25 °C) δ 141.0 (o-C₆H₅), 129.1, 126.6 (m-, p-C₆H₅), 107.6 (ipso-C₆H₅), 47.1 (CH₃). Anal. Found C, 29.31; H, 4.03; N, 3.79. Calc. for C₁₈H₂₈N₂Al₂Se₂Te₂: C, 29.24; H. 3.82: N, 3.79%.
- ‡ Crystallographic data (CAD4 diffractometer, crystals mounted in a capillaries): $2 \cdot C_6 H_5 Me$: $C_{19} H_{46} A I_4 N_4 S e_5$, M=833.3, orthorhombic, space group $Pna2_1$, a=12.294(2), b=27.769(5), c=10.285(5) Å, U=3511(2) ų, D_c (Z=4) = 1.576 g cm $^{-3}$, F(000)=1640, $\mu_{Mo}=53.3$ cm $^{-1}$, specimen: $0.21\times0.50\times1.10$ mm, $A*_{\min,\max}=3.15$, 12.08, $2\theta_{\max}=50^\circ$, final R, $R_w=0.040$, 0.038 (0.043, 0.041 other hand) $N_o=1934$ 'observed' $[(I>3\sigma(I)]$ reflections out of N=3270 unique.
- 3: $C_{18}H_{28}Al_2N_2Se_2Te_2$, M=739.5, monoclinic, space group $P2_1/n$, a=6.746(4), b=10.725(3), c=17.529(7) Å, $\beta=90.57(4)$, U=1268.3(9) Å³, D_c (Z=2) = 1.936 g cm⁻³, F(000)=696, $\mu_{Mo}=52.5$ cm⁻¹, specimen: $0.35\times0.20\times0.22$ mm, $A*_{\min,\max}=2.20$, 3.59, $2\theta_{\max}=55^\circ$, final R, $R_w=0.033$, 0.042, $N_o=2042$ 'observed' [($I>3\sigma(I)$)] reflections out of N=2915 unique. For both structures all H-atoms were included as invariants. CCDC 182/611.
- 1 M. G. Gardiner, C. L. Raston and V.-A. Tolhurst, J. Chem. Soc., Chem. Commun., 1995, 2501.
- 2 S. Schultz, H. W. Roesky, H. J. Koch, G. Sheldrick, D. Stalke and A. Kuhn, Angew. Chem., Int. Ed. Engl., 1993, 32, 1729.
- 3 A. H. Cowley, R. A. Jones, P. R. Harris, D. A. Atwood, L. Contreras and C. J. Burek, *Angew. Chem., Int. Ed. Engl.*, 1991, 30, 1143.
- 4 M. G. Gardiner, C. L. Raston and V.-A. Tolhurst, J. Chem. Soc., Chem. Commun., 1995, 1457.
- 5 J. L. Atwood, K. D. Robinson, C. Jones and C. L. Raston, J. Chem. Soc., Chem. Commun., 1991, 1697.
- 6 GAUSSIAN 94, Revision D.3, Gaussian, Inc., Pittsburgh, PA, 1995.

Received in Columbia, MO, USA, 13th May, 1997; 7/033241